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Abstract: Local contributions to beta diversity (LCBD) can be used to identify sites with high

ecological uniqueness and exceptional species composition within a region of interest. Yet, these

indices are typically used on local or regional scales with relatively few sites, as they require in-

formation on complete community compositions difficult to acquire on larger scales. Here, we

investigated how LCBD indices can be predicted over broad spatial extents using species dis-

tribution modelling and examined the effect of scale changes on beta diversity quantification.

We used Bayesian additive regression trees (BARTs) to predict warbler species distributions in

North America based on observations recorded in the eBird database. We then calculated LCBD

indices for observed and predicted data and compared the site-wise difference using direct com-

parison, a spatial association test, and generalized linear regression. We also examined the

relationship between LCBD values and species richness in different regions and at various spa-

tial extents. Our results showed that species distribution models provided uniqueness estimates

highly correlated with observed data. The form and variance of the LCBD-richness relation-

ship varied according to the region and the total extent size. The relationship was also affected

by the proportion of rare species in the communities. Therefore, sites identified as unique over

broad spatial extents may vary according to regional characteristics. These results show that

species distribution modelling can be used to predict ecological uniqueness over broad spatial

extents, which could help identify beta diversity hotspots and important targets for conservation

purposes in unsampled locations.



Introduction1

Beta diversity, defined as the variation in species composition among sites in a geographic re-2

gion of interest (Legendre, Borcard, and Peres-Neto 2005), is an essential measure to describe3

the organization of biodiversity through space. Total beta diversity within a community can be4

partitioned into local contributions to beta diversity (LCBD) (Legendre and De Cáceres 2013),5

which allow the identification of sites with exceptional species composition, hence unique biodi-6

versity and potential conservation value. Sites with unique community composition often differ7

from those with high species richness, possibly as they harbour rare species or help maintain8

beta diversity (da Silva, Hernández, and Heino 2018; Heino et al. 2017; Landeiro et al. 2018).9

Hence, focusing on uniqueness can prove helpful as a complementary approach to species rich-10

ness (Heino and Grönroos 2017; da Silva, Hernández, and Heino 2018; Yao et al. 2021; Dubois,11

Proulx, and Pellerin 2020). However, the use of LCBD indices is currently limited in two ways.12

First, LBCD indices are typically used on data collected over local or regional scales with rela-13

tively few sites, for example, on fish communities at intervals along a river or stream (Legendre14

and De Cáceres 2013). Second, LCBD calculation methods require complete information on15

community composition; thus, they are inappropriate for partially sampled sites (e.g., where16

data for some species are missing or uncertain) and cannot directly provide assessments for un-17

sampled ones. Accordingly, this method is of limited use to identify areas with exceptional18

biodiversity in regions with sparse sampling. However, predictive approaches offer an oppor-19

tunity to overcome such limitations, as computational methods often uncover novel ecological20

insights from existing data (Poisot et al. 2019), including in lesser-known locations and on larger21

spatial scales.22

Species distribution models (SDMs) (Guisan and Thuiller 2005) can bring a new perspective to23

LCBD studies by filling in gaps in community composition data to perform analyses on broader24

scales. Single-species SDMs aim at predicting the distribution of a species in unsampled loca-25

tions based on information (such as environmental data) from sampled locations with reported26

occurrences. Many approaches allow going from single-species SDMs to a whole community on27

which to evaluate community-level metrics, yet their relevance has not been explicitly evaluated28

for ecological uniqueness and LCBD indices. The most straightforward approach is stacked29
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distribution models (S-SDMs) (Ferrier and Guisan 2006; Guisan and Rahbek 2011). Single-30

species SDMs are first performed separately, then combined to form a community prediction on31

which community-level analyses can be applied. S-SDMs tend to overestimate species richness32

(Dubuis et al. 2011; D’Amen et al. 2015; Zurell et al. 2020), which could result from threshold-33

ing the probabilities into presence-absence data before stacking the species distributions (Cal-34

abrese et al. 2014). Summing the occurrence probabilities without applying a threshold is an35

alternative (Calabrese et al. 2014), but it may limit some analyses as it does not return species36

identities for every site (Zurell et al. 2020), as is required with LCBD calculations. In com-37

parison, joint species distribution models (JSDMs)(Pollock et al. 2014) try to improve predic-38

tions by incorporating species co-occurrence or shared environmental responses into the mod-39

els. However, these models do not always improve community-level predictions compared to40

S-SDMs (Zurell et al. 2020). Spatially explicit species assemblage modelling (SESAM) (Guisan41

and Rahbek 2011), hierarchical modelling of species communities (HMSC) (Ovaskainen et al.42

2017), and Bayesian networks (BN) (Staniczenko et al. 2017) are other alternatives that could43

yield better community predictions than S-SDMs. On the other hand, they add methodological44

and computational overload, impeding their use for broad spatial extents. Moreover, their rele-45

vance for community prediction is often validated against extensive work on species richness.46

By comparison, ecological uniqueness and LCBD indices have rarely been used in predictive47

frameworks. Therefore, S-SDMs may prove an appropriate first step to establish some prediction48

baselines.49

Combining LCBD indices with a predictive approach through SDMs will allow measuring50

uniqueness over broader spatial extents, across continuous landscapes, and on a higher num-51

ber of sites than what has previously been studied. LCBD scores have typically been used at52

local or regional scales with relatively few sites (up to 60 sites on extents covering 10 km to 40053

km, Legendre and De Cáceres 2013; da Silva and Hernández 2014; Heino et al. 2017; Heino54

and Grönroos 2017). Some studies did use the measure over broader, near-continental extents55

(Yang et al. 2015; Poisot et al. 2017; Taranu, Pinel-Alloul, and Legendre 2020), but the total56

number of sites in these studies were relatively small (maximum 51 sites). Recent studies also57

investigated LCBD and beta diversity on sites distributed in contiguous grids or as pixels, hence58
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uniform sampling intervals and no spatial gaps, but these did not cover large extents and a high59

number of sites (up to 1250 sites and 6 km2, Tan et al. 2017, 2019; Legendre and Condit 2019;60

D’Antraccoli et al. 2020). Two recent studies have, however, adopted promising predictive ap-61

proaches on regional extents. First, Niskanen et al. (2017) predicted LCBD values of plant62

communities (and three other diversity measures) on a continuous scale and a high number of63

sites (> 25,000) using Boosted Regression Trees (BRTs). However, they modelled the diversity64

measures directly after calculating them on a smaller number of sampled sites. Second, Vascon-65

celos, Nascimento, and Prado (2018) used ecological niche models (ENMs) to predict anurans66

ecological niches according to actual and forecasted environmental conditions, then calculated67

the LCBD values on the predictions to identify biodiversity hotspots. Using this approach, pre-68

dicted LCBD values are calculated in a way closer to the original formulation. This development69

of predictive techniques is exciting, especially as it could be pushed a step further to continental70

extents, a higher number of sites, and more species occurrences using SDMs and massive data71

sources. Still, it should be accompanied by an investigation of the determinant of ecological72

uniqueness in such conditions.73

Measuring ecological uniqueness from LCBD indices over broad spatial extents and spatially74

continuous data also raises the question of which sites will be identified as exceptional and for75

what reason. The method intends that sites stand out and receive a high LCBD score whenever76

they display an exceptional community composition, be it a unique assemblage of species with77

high conservation value or a community richer or poorer than others in the region (Legendre78

and De Cáceres 2013). Both the original study and many of the later empirical ones have shown79

a negative relationship between LCBD scores and species richness (Legendre and De Cáceres80

2013; da Silva and Hernández 2014; Heino et al. 2017; Heino and Grönroos 2017), although81

other studies observed both negative and positive relationships at different sites (Kong et al.82

2017) or quadrats (Yao et al. 2021). Some studies showed that the direction of the relationship83

is related to the percentage of rare species in the community (da Silva, Hernández, and Heino84

2018; Yao et al. 2021). However, beta diversity and species rarity are both concepts that depend85

on scale. For instance, total beta diversity increases with spatial extent (Barton et al. 2013) and86

varies because of higher environmental heterogeneity and sampling of different local species87
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pools (Heino et al. 2015). Therefore, the LCBD-richness relationship and the effect of rare88

species on LCBD values should be investigated over broad spatial extents, as they might not be89

constant across scales.90

Here, we examined whether species distribution models (SDMs) can be combined with local91

contributions to beta diversity (LCBD) to assess ecological uniqueness over broader spatial ex-92

tents. We also investigated the effect of scale changes on beta diversity quantification. We first93

predicted species distributions on continental scales using extended occurrence data from eBird94

and Bayesian additive regression trees (BARTs). We then quantified uniqueness with the LCBD95

measure for both predicted and observed data. Next, we examined the site-wise difference us-96

ing direct comparison, a spatial autocorrelation test, and generalized linear regression. We then97

investigated the relationship between uniqueness and species richness for different regions and98

scales and according to the proportion of rare species.99

Methods100

Occurrence data101

We used occurrence data from eBird (Sullivan et al. 2009) downloaded through the eBird Basic102

Data set from June 2019 (eBird Basic Dataset 2019). We restricted our analyses to the New103

World warbler family (Parulidae) in North America (Canada, the United States, Mexico). eBird104

is a semi-structured citizen science data set, meaning that observations are reported as checklists105

of species detected in an observation run (Johnston et al. 2020). Observers can explicitly specify106

that their checklist contains all species they could detect and identify during a sampling event, in107

which case it is labelled as a “complete checklist.” Using complete checklists instead of regular108

ones allows researchers to infer non-detections in locations where detection efforts occurred,109

which offers performance gains in species distribution models (Johnston et al. 2020). Therefore,110

we selected the data from the complete checklists only. Our final data set comprised 62 warbler111

species and 22,974,330 observations from 9,103,750 checklists. Warblers are a diverse group112

with many species, are popular among birders given their charismatic aspect, and are widely113

distributed in various habitats across North America.114
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Environmental data115

Our environmental data consisted of climatic data from WorldClim 2.1 (Fick and Hijmans 2017)116

and land cover data from the Copernicus Global Land Service (Buchhorn et al. 2019). We117

restricted these data to a spatial extent comprised between -145.0 and -50.0 degrees of longitude118

and between 20.0 and 75.0 degrees of latitude. First, the WorldClim data consist of spatially119

interpolated monthly climate data for global land areas. We used the standard BIOCLIM variables120

(Booth et al. 2014) from WorldClim 2.1, which represent annual trends, ranges, and extremes121

of temperature and precipitation, but selected only 8 out of the 19 ones to avoid redundancy122

(bio1, bio2, bio5, bio6, bio12, bio13, bio14, bio15). We downloaded the data at a resolution of123

10 arcminutes (around 18 km2 at the equator), the coarsest resolution available, which should124

mitigate potential imprecision in the eBird data regarding the extent of the sampled areas in125

each observation checklist. Moreover, some studies have argued that coarser resolutions lead126

to less overestimation of species richness and better identification of bird biodiversity hotspots127

given the patchiness of observation data (Hurlbert and Jetz 2007). We acknowledge that using an128

arcminutes-based resolution means that the surface area of our pixels will not be equal depending129

on the latitude.130

Second, the Copernicus data are a set of variables representing ten land cover classes (e.g., crops,131

trees, urban areas) and measured as a percentage of land cover. The data are only available at132

a finer resolution of 100 m. We coarsened them to the same ten arcminute resolution as the133

WorldClim data by averaging the pixels’ cover fraction values. We removed two variables (moss134

and snow) from our predictive models as their cover fraction was 0% on all sites with warbler135

observations.136

Species distribution models137

We converted the occurrence data to a presence-absence format compatible with community138

analyses. We considered every pixel from our ten arcminutes environmental layers as a site and139

then verified, for each species, if there was a single observation in every site. Finally, we recorded140

the outcome as a binary value: present (1) if a species was ever recorded in a site and absent (0) if141
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it was not. Complete checklists help ensure that these zeros represent non-detections, rather than142

the species not being reported; hence we considered them as absence data, similar to Johnston143

et al. (2020), although we recognize that there exists a doubt on whether these truly represent144

non-detections.145

We predicted species distribution data on continuous scales from our presence-absence data146

using Bayesian Additive Regression Trees (BARTs) (Chipman, George, and McCulloch 2010),147

a classification and regression trees method recently suggested for species distribution modelling148

(Carlson 2020). BARTs are based on an ensemble of trees, similarly to Boosted Regression Trees149

and Random Forest, but follow a sum-of-trees model and a Bayesian framework. Trees are first150

constrained as weak learners by priors regarding structure and nodes, then updated through an151

iterative Bayesian backfitting Markov Chain Monte Carlo (MCMC) algorithm which ultimately152

generates a posterior distribution of predicted classification probabilities (Chipman, George,153

and McCulloch 2010; Carlson 2020). In the context of species distribution modelling, BARTs154

showed high performance when compared to other predictive algorithms (Konowalik and Nosol155

2021; Tytar and Baidashnikov 2021). We first performed BARTs separately for all species and156

estimated the probability of occurrence in all the sites of our region of interest using the posterior157

median. We then converted the results to a binary outcome according to the threshold that158

maximized the True Skill Statistic (TSS) for each species, as suggested by Carlson (2020).159

Quantification of ecological uniqueness160

We used the method of Legendre and De Cáceres (2013) to quantify compositional unique-161

ness from overall beta diversity for both the observed and predicted data. First, we assembled162

the presence-absence data by site to form two site-by-species community matrices, one from163

observed data, called 𝑌 (39,024 sites by 62 species), and one from predicted data, called 𝑌164

(99,382 sites by 62 species). Next, we measured species richness per site as the number of165

species present. Finally, we removed the sites without any species from the predicted matrix166

𝑌 , for a new total of 85,526 sites (this was unnecessary for the observed matrix 𝑌 ). We then167

applied the Hellinger transformation to both matrices in order to compute beta diversity from168

the community composition data (Legendre and De Cáceres 2013). We measured total beta di-169

8 of 26



versity as the variance of each community matrix and calculated the local contributions to beta170

diversity (LCBD), which quantify how much a specific site (a row in each matrix) contributes171

to the overall variance in the community (Legendre and De Cáceres 2013). High LCBD values172

indicate a unique community composition, while low values indicate a more common species173

set. We note that our LCBD values, which add up to 1 because the values are divided by the174

total sum-of-squares of the data matrix, were very low given the high number of sites in both175

𝑌 and 𝑌 . However, the relative difference between the scores in one set matters more than the176

absolute value to differentiate their uniqueness.177

Comparison of observed and predicted values178

We performed three verification to compare the richness and uniqueness estimates obtained179

from our predicted distributions to those obtained with the eBird occurrence data. First, we180

performed a direct comparison by subtracting the richness and LCBD estimates obtained from181

𝑌 (the observed data) from the estimates obtained from 𝑌 (the predicted data). To do so, we182

used the richness estimates as-is but modified the LCBD values to achieve a non-biased com-183

parison, given that the values were initially calculated on sets of different lengths. Therefore,184

we recomputed the LCBD scores only for the sites for which we had occurrences in both 𝑌 and185

𝑌 , which mostly corresponded to the sites in 𝑌 , minus a few sites where the SDMs predicted no186

species occurrence. We then plotted the richness and LCBD differences to examine their spatial187

distributions. Second, we performed the modified t test from Clifford, Richardson, and Hemon188

(1989) to assess the correlation between the observed and predicted estimates and test for spatial189

association. We performed the test separately for the richness and the LCBD estimates. Third,190

we performed Generalized Linear Models between the observed and predicted estimates and191

plotted the deviance residuals to examine their spatial distribution. We used a negative binomial192

regression with a log link function for the richness estimates and a beta regression with a logit193

link function for the LCBD values, similar to Heino and Grönroos (2017) and Yao et al. (2021).194
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Investigation of regional and scaling variation195

To investigate possible regional and scaling effects, we recalculated LCBD values on various196

subregions at different locations and scales. First, we selected two subregions of equivalent size197

(20.0 longitude degrees by 10.0 latitude degrees) with contrasting richness profiles and corre-198

sponding to different ecoregions to verify if the relationship between species richness and LCBD199

values was similar. The first subregion was in the Northeast (longitude between -80.0 and -60.0,200

latitude between 40.0 and 50.0), was mostly species-rich (for both the observed and predicted201

data), and corresponded to the Eastern Temperate Forests level I ecoregion (Commission for202

Environmental Cooperation 1997). The second subregion was in the Southwest (longitude be-203

tween -120.0 and 100.0, latitude between 30.0 and 40.0), was mostly species-poor, and covered204

Mediterranean California, North American Deserts, Temperate Sierras, and Southern Semi-205

Arid Highlands ecoregions (Commission for Environmental Cooperation 1997). Second, we206

recalculated the LCBD indices at three different extents, starting with a focus on the Northeast207

subregion and progressively extending the extent to encompass the Southwest subregion. We did208

these two verifications with both the observed and predicted data but only illustrate the results209

with the predicted data as both were qualitatively similar.210

Proportion of rare species211

We investigated the effect of the proportion of rare species in the community on the direction212

of the relationship between species richness and LCBD values in our Northeast and Southwest213

subregions. Following De Cáceres et al. (2012) and Yao et al. (2021), we classified species214

as rare when they occurred in less than 40% of the sites in each subregion. We calculated the215

proportion of rare species for every site. We then grouped the sites for both subregions depend-216

ing on whether they were part of an ascending or a descending portion in the LCBD-richness217

relationship. Given that the relationship sometimes displays a curvilinear form with a positive218

quadratic term (Heino and Grönroos 2017; Tan et al. 2019), we separated the ascending and219

descending portions based on the species richness at the site with the lowest LCBD value (us-220

ing the median richness if there were multiple sites). This value corresponds to the inflection221

point of the relationships. For example, the lowest LCBD value was 7.045e-05 in the Northeast222
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subregion and the corresponding richness was 23. All the sites with more than 23 species were223

assigned to the ascending portion, and all the sites with 23 species or fewer were assigned to the224

descending portion. In the Southwest subregion, the lowest LCBD value and its corresponding225

richness were 5.438e-05 and 12, respectively. We then mapped the ascending and descending226

groups to view their spatial distribution. We also examined the distribution of the rare species227

proportions in both groups using a kernel density estimation plot. Similar to our previous veri-228

fication, we performed this analysis with both observed and predicted data but once again only229

illustrate the results with the predicted data as both were qualitatively similar.230

Software231

We used Julia v1.6.1 (Bezanson et al. 2017) for most of the project and R v4.1.0 (R Core Team232

2021) for some specific steps. We used the Julia package SimpleSDMLayers.jl (Dansereau and233

Poisot 2021) as the basic framework for our analyses, to download the WorldClim 2.1 data, and to234

map our results through the package’s integration of Plots.jl. We also used StatsPlots.jl to235

produce the kernel density estimation plots in our rare species analysis. We computed the LCBD236

indices with our own function implemented in Julia, whose results were verified by comparison237

to the beta.div function from the package adespatial (Dray et al. 2021) in R. We used the R238

packages auk (Strimas-Mackey, Miller, and Hochachka 2018) to extract and manipulate eBird239

data, embarcadero (Carlson 2020) to perform the BART models, vegan (Oksanen et al. 2019) to240

apply the Hellinger transformations, and SpatialPack (Vallejos, Osorio, and Bevilacqua 2020)241

to perform the modified t test (with the function modified.ttest) from Clifford, Richardson,242

and Hemon (1989). We used MASS (Venables and Ripley 2002) and betareg (Cribari-Neto243

and Zeileis 2010) to perform the negative binomial and beta regressions, respectively. We also244

used GDAL (GDAL/OGR contributors 2021) to coarsen the Copernicus land cover data. All245

the scripts required to reproduce the analyses are archived on Zenodo (https://doi.org/10.246

5281/zenodo.6024392).247

11 of 26

https://doi.org/10.5281/zenodo.6024392
https://doi.org/10.5281/zenodo.6024392
https://doi.org/10.5281/zenodo.6024392


Results248

Species distribution models generate relevant community predictions249

Species richness from observation data (Fig. 1a) was higher on the East Coast and lower on250

the West Coast, with many unsampled patches in the North, South, and Central West. Richness251

results from SDM data (Fig. 1b) displayed higher richness on the East Coast and sites with few or252

no species up north and in the Central West. There was no clear latitudinal gradient in richness253

but rather an East-West one. Landmarks such as the Rockies and croplands in the Central West254

(which should be species-poor habitats) were notably visible on the maps, separating the East255

and West. LCBD scores from observation data (Fig. 1c) were low on the East Coast and higher256

on the border of sampled sites in the Central West. They were also higher in the North and in257

the South where observations were sparser. Results from SDM predictions were qualitatively258

similar (Fig. 1d), with lower LCBD values in the East and more unique sites in the Central West,259

Central Mexico, and some Northern regions. There was no clear latitudinal gradient, and the260

East-West contrast, while present, was less clear than on the richness maps.261

[Figure 1 about here.]262

The modified t test of Clifford, Richardson, and Hemon (1989) showed a high correlation be-263

tween the observed and predicted estimates of richness and uniqueness, as well as a statistically264

significant spatial association between the values. For species richness, the correlation coeffi-265

cient was 0.777, the F-statistic was 20.007, and the p-value was 6.093e-04. For LCBD scores,266

the correlation coefficient was 0.518, the F-statistic was 40.083, and the p-value was 5.528e-09.267

The difference between the observed and predicted estimates (predicted richness - observed268

richness and predicted LCBD - observed LCBD) showed opposite geographic distributions for269

species richness and ecological uniqueness (Fig. 2). Predicted richness estimates were higher270

than observed estimates on the East Coast, on the West Coast and in Mexico but were lower than271

observed estimates in the Central West (Fig. 2a). Predicted LCBD estimates, on the other hand,272

were lower than observed estimates on the East Coast and higher in the Central West (Fig. 2b).273
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Regression residuals showed similar geographic distributions to their corresponding difference274

values (Fig. 3).275

[Figure 2 about here.]276

[Figure 3 about here.]277

Uniqueness displays regional variation as two distinct profiles278

The relationship between LCBD values and species richness displayed contrasting profiles in279

species-rich and species-poor regions (Fig. 4). In the species-rich Northeast region , LCBD280

scores displayed a mostly decreasing relationship with species richness, with a slightly curvi-281

linear form and increase of values for very rich sites. The sites with the highest LCBD values282

were the species-poor sites while the species-rich sites displayed scores. The Southwest subarea283

showed a different relationship with a sharper initial decline and a larger increase as richness284

reached 20 species. The sites with the highest LCBD values were the poorest in terms of species285

richness, as in the Northeast region, but the species-rich sites were proportionally more unique286

in the Southwest region. Total beta diversity was higher in the Southwest subregion (0.417) than287

in the Northeast (0.179), indicating higher compositional differences between the sites.288

[Figure 4 about here.]289

Uniqueness depends on the scale on which it is measured290

The LCBD-richness relationship showed important variation when scaling up and changing the291

region’s extent (Fig. 5). For smaller extents, starting with a species-rich region, the relationship292

is well defined, mostly decreasing but notably curvilinear (with a lesser increase for richness293

values higher than the median). However, as the extent increases and progressively reaches294

species-poor regions, the relationship broadens, displays more variance, and loses its curvilinear295

aspect while keeping a decreasing form. Total beta diversity was higher when increasing the296

spatial extent, going from 0.121 to 0.284 and 0.687.297

[Figure 5 about here.]298
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Uniqueness depends on the proportion of rare species299

The proportion of rare species per site differed depending on the classification in the ascending or300

descending portions of the LCBD-richness relationship (Fig. 6). The proportion of rare species301

was higher in the sites corresponding to the ascending portions of the relationships (shown in 4)302

than in the sites corresponding to the descending portions for both subregions. The classification303

of the sites in the two portions showed a clear latitudinal gradient in the Northeast subregion,304

while it was distributed in patches in the Southwest subregion (Fig. 6).305

[Figure 6 about here.]306

Discussion307

Our results showed a decreasing relationship between species richness and LCBD values on308

broad spatial extents (Fig. 5c) but also highlighted that the exact form of this relationship varies309

depending on the region and the spatial extent on which it is measured. Our species-rich North-310

east subregion (Fig. 4a) showed a decreasing relationship, very similar to previous studies, and311

slightly curvilinear, as described by Heino and Grönroos (2017) and Tan et al. (2019). This312

result for warbler species is in line with the original study on fish communities (Legendre and313

De Cáceres 2013) and with following ones on insect metacommunities (da Silva and Hernández314

2014; Heino et al. 2017; Heino and Grönroos 2017), dung beetles (da Silva, Hernández, and315

Heino 2018; da Silva, Bogoni, and Heino 2020), aquatic beetles (Heino and Alahuhta 2019),316

stream macroinvertebrates (Sor, Legendre, and Lek 2018), stream diatoms (Vilmi, Karjalainen,317

and Heino 2017), multi-trophic pelagic food webs (phytoplankton, zooplankton, fish) (Taranu,318

Pinel-Alloul, and Legendre 2020), temperate forest trees (Tan et al. 2019), mammals (da Silva,319

Bogoni, and Heino 2020), wetland birds (de Deus et al. 2020), and various phylogenetic groups320

(plants, lizards, mites, anurans, mesoinvertebrates) (Landeiro et al. 2018). However, it was321

originally argued that the negative relationship was not general or obligatory (Legendre and De322

Cáceres 2013). Different LCBD-richness relationships have also been observed, with both pos-323

itive and negative relationships for different sites or taxonomic groups in some studies (Kong et324

14 of 26



al. 2017; Teittinen et al. 2017), as well as a negative relationship with the number of common325

species but a positive relationship with the number of rare species (Qiao et al. 2015).326

Our results further show that the relationship may depend on the region’s richness profile, as327

the relationship was different in our species-poor Southwest subregion, with a sharper initial328

decrease (Fig. 4b). Therefore, the curvilinear form may depend on how pronounced the contrast329

is between the region’s median richness and its richest ecologically feasible sites. The increasing330

part of the curvilinear form for higher richness values was also more pronounced in our results331

(Fig. 4a,b; Fig. 5c) than in previous studies (e.g, Tan et al. 2019), which reinforces the idea that332

the relationship and its curvilinear form may vary depending on the region.333

The variation in the LCBD-richness relationship when extending the study extent showed that334

the uniqueness patterns highlighted are not necessarily the same depending on the scale on which335

it is used (Fig. 5). The relationship progressively lost its clear definition and curvilinear form336

as the East and West profiles merged, creating a new distinct profile with more variation and337

no curvilinear form. Therefore, aggregating too many different sites might possibly mask some338

patterns of uniqueness in species-rich sites. Total beta diversity, on the other hand, showed the339

variation expected from previous studies, increasing with spatial extent (Fig. 5) (Barton et al.340

2013; Heino et al. 2015). Its value was high at the continental scale (0.687) but lower than what341

has been observed in some studies (e.g., 0.80 on macroinvertebrate communities in the Lower342

Mekong Basin by Sor, Legendre, and Lek 2018).343

Our results confirm that the proportion of rare species in the community may affect the direc-344

tion of the relationship between species richness and ecological uniqueness (Fig. 6). da Silva,345

Hernández, and Heino (2018) suggested that the proportion of rare and common species in the346

communities determines whether the relationship will be negative, non-significant, or positive.347

Yao et al. (2021) showed an association between the direction of the relationship and the pro-348

portion of rare species, with sites with a lower proportion (between 60% and 75% in their case)349

displaying a negative relationship and sites with a higher proportion (around 85%) showing a350

positive one. Our results further show that sites associated with a positive relationship within a351

curvilinear one tended to have a higher rare species proportion (Fig. 6). This also implies that352

the proportion of rare species was higher in species-rich sites than in species-poor ones in both353
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our Northeast and Southwest subregions. Further work should attempt to disentangle the effects354

of the rare species proportion and the region’s richness profile.355

Our results showed that SDM models provide richness and uniqueness predictions highly cor-356

related to the occurrence data while filling gaps in poorly sampled regions (Fig. 1). The results357

showed a statistically significant spatial association between predicted and observed estimates358

despite correcting for autocorrelation using the modified t-test from Clifford, Richardson, and359

Hemon (1989). A positive autocorrelation on large distances indicates aggregates or structures360

repeating through space (Legendre and Fortin 1989). This is consistent with our results, as the361

distribution of richness and uniqueness values was visibly spatially structured in both our ob-362

served and predicted data (Fig. 1). Nonetheless, it is possible that the autocorrelation in the363

predicted values could represent an artifact of the predictive models (capturing the spatial struc-364

ture from the environmental variables, for example), and might not represent the true autocor-365

relation expected for the uniqueness estimates. Further work could verify this by quantitatively366

comparing the autocorrelation and spatial structures in the observed and predicted uniqueness367

estimates.368

Predicted values also tended to underestimate uniqueness in species-rich regions and overesti-369

mate it in species-poor ones, with the opposite trend for species richness (Figs. 2, 3). Overpre-370

diction of richness using S-SDMs was reported previously (Dubuis et al. 2011; D’Amen et al.371

2015; Zurell et al. 2020). No comparable baseline exists for predictions of LCBD values, as372

our study is the first to compare LCBD estimates from observed and predicted data in such a373

way. However, some studies showed that LCBD distributions were spatially structured across374

sampling sites (da Silva, Hernández, and Heino 2018). On the other hand, the spatial structure375

in our results did not exactly concord with the one reported by Heino and Alahuhta (2019), who376

showed a negative relationship between LCBD values and latitude for diving beetles commu-377

nities in Northern Europe. In comparison, our LCBD scores increased both in the North and378

South (Fig. 1), hence did not strictly increase with latitude, and also showed a clear East-West379

gradient. Overall, our distribution results (Figs. 1, 2, 3) also have implications for conservation,380

as they confirm that species richness and ecological uniqueness measured from LCBD values381

may conflict and highlight different potential hotspots (Dubois, Proulx, and Pellerin 2020; Yao382
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et al. 2021), thus reinstating the need to protect both with complementary strategies.383

Our predictions for regions with sparse sampling are of interest as they allow a quantitative384

evaluation, however imperfect, for sites where we would otherwise have no information. Our385

SDMs also offered relevant LCBD predictions using eBird, arguably one of the largest presence-386

absence data sets available (when using its complete checklist system), showing the measure’s387

potential on such massive data. Together, the potential to generate uniqueness predictions in388

new locations and through massive data opens new opportunities for LCBD analyses on ex-389

tended spatial scales and on a broader diversity of taxons. An interesting way forward would390

be to test these results using more advanced community assembling techniques than S-SDMs.391

The use of SESAM (Guisan and Rahbek 2011) with probabilistic SDMs, probability ranking,392

and species richness predictions as macroecological constraints returns high site-level prediction393

accuracy (Zurell et al. 2020) and would be compatible with presence-absence LCBD calcula-394

tions. The use of probabilistic stacks rather than binary ones (Calabrese et al. 2014) could also395

constitute a novel way to calculate LCBD indices. Both these procedures should reduce the396

richness deviation we observed, and it would be interesting to verify if this can also be the case397

with LCBD values. An ensemble of SDM algorithms could also be used to capture a broader398

range of possible outcomes for the LCBD predictions. However, given the high performance399

of BARTs in model comparisons (Konowalik and Nosol 2021; Tytar and Baidashnikov 2021)400

and the large extent we covered, we do not believe the changes to the LCBD gradients would be401

strong enough to affect our results in a meaningful way.402

This study showed how ecological uniqueness can be measured over broad spatial extents, in-403

cluding for regions with sparse sampling, and how scale changes may affect beta diversity quan-404

tification. It is the first study to assess the relevance of local contributions to beta diversity405

calculated on the output of species distribution models. It is also the first to compare the re-406

lationship between LCBD values and species richness for different regions and spatial extents.407

First, our results showed that the negative relationship often observed between species richness408

and LCBD scores can take different forms depending on the richness profile of the regions on409

which it is measured. Therefore, species-rich and species-poor regions may display different410

ways to be unique. Second, the negative relationship was not constant when varying the spatial411

17 of 26



study extent and may be less clearly defined at broad scales when contrasting regional relation-412

ships are present. The broad-scale uniqueness profile might then be completely distinct from413

the regional profiles constituting it. Finally, species distribution models offer a promising way414

to generate uniqueness predictions on broad spatial extents and could prove useful to identify415

beta diversity hotspots in unsampled locations on large spatial scales, which could be important416

targets for conservation purposes.417
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Figure 1: Comparison of species richness and LCBD scores from observed and predicted war-
bler occurrences in North America. Values were calculated for sites representing ten arcminute
pixels. We measured species richness after converting the occurrence data from eBird (a) and
the SDM predictions from our single-species BART models (b) to a presence-absence format per
species. We applied the Hellinger transformation to the presence-absence data, then calculated
the LCBD values from the variance of the community matrices separately for the occurrence
data (c) and the SDM predictions (d). Areas in light grey (not on the colour scale) represent
mainland sites with environmental data but without any warbler species present.
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Figure 2: Comparison between observed and predicted estimates of species richness (a) and
ecological uniqueness (b). The difference values represent the estimate from the predicted data
set minus the estimate from the observed data set. LCBD values were recalculated for the same
set of sites with observations in both data sets.
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Figure 3: Comparison of the regression residuals between the observed and predicted estimates
of species richness (a) and ecological uniqueness (b). The estimate from the predicted data set
was used as the dependent variable and the estimate from the observed data set as the inde-
pendent variable. A negative binomial regression with a log link function was used for species
richness, and a beta regression with a logit link function was used for uniqueness. LCBD values
were recalculated for the same set of sites with observations in both data sets.
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Figure 4: Comparison between a species-rich region (Northeast, a) and a species-poor one
(Southwest, b) based on the SDM predictions for warbler species in North America. The left-side
figures represent the LCBD scores for the assembled presence-absence predictions, calculated
separately in each region. The colour scales are set to the respective range of LCBD scores to
highlight the relative change within each region rather than compare the scores between both
regions. The right-side 2-dimensional histograms represent the decreasing and slightly curvilin-
ear relationship between LCBD values and species richness. The vertical and horizontal dashed
lines respectively represent the median richness and LCBD value in each region, while BDtot
represents the total beta diversity.
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Figure 5: Effect of extent size on the relationship between site richness and LCBD values based
on the SDM predictions for warbler species in North America. The relationship progressively
broadens and displays more variance when scaling up while total beta diversity increases. The
LCBD values were recalculated at each scale based on the sites in this region. The vertical
and horizontal dashed lines respectively represent the median richness and LCBD value in each
region, while BDtot represents the total beta diversity.
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Figure 6: Proportion of rare species in the ascending and descending portions of the LCBD-
richness relationship for the Northeast (a) and Southwest (b) subregions. The left side figures
show the geographic distribution of the sites from each group. Sites were assigned to the as-
cending portion if their species richness was higher than the richness of the site with the lowest
LCBD value, which corresponds to the inflection point of the right side figures of Fig. 4, and in
the descending portion otherwise. The right side figures represent the kernel density estimation
of the proportion of rare species in each group. Values on the y-axis are probability densities
scaled so that the area under the curve equals one. Similarly, the area under the curve for a given
range of values on the x-axis (proportions of rare species) represents the probability of observing
a value in that range. Species were classified as rare when they occurred in fewer than 40% of
the sites in the subregion. The proportion of rare species was then calculated for every site.
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